
Die Rolle der Faszien

Das 1. Ulmer Symposium zum Thema „Bindegewebe in der Sportmedizin” (CONNECT 2013) thematisierte die Rolle der Faszien aus klinischer, molekularer sowie biomechanischer Sicht, um gezielt den Austausch und Dialog zwischen den Fachbereichen anzuregen. Das CONNECT Symposium spricht Bindegewebsforscher, Sportmediziner, Physiotherapeuten und Trainer gleichermaßen an, um den Transfer von Forschungsergebnissen in die sportliche und therapeutische Praxis zu übertragen. Darüber hinaus verbindet CONNECT grundlagenwissenschaftliche Vorträge mit praxisnahen Workshops, wie Taping, Ultraschall oder Myoreflextherapie, in denen neue sensible Diagnostikgeräte und Techniken der Faszienmanipulation erlernt und ausprobiert werden können.

Die Sektion Sport- und Rehabilitationsmedizin bietet zusätz- lich zu ambulanter Versorgung in den Bereichen Kardiologie und Orthopädie ein internistisches Rehabilitationssystem, und verschiedene Herzzugtruppen in Ulm und Erbach an, die seit vielen Jahren mit großer Nachfrage und mit viel Erfolg betrieben werden. In Ulm werden Olympische Athleten aus den Bereichen Fechten, Rudern und Kanu in Zusammenarbeit mit den nationalen Verbänden sportwissenschaftlich sowie medizinisch im Training und bei Meisterschaften betreut.

Das Team des molekularen Muskelobservatoriums beschäftigt sich primär mit dem Einfluss von körperlichem Training auf Prozesse in der Muskulatur, besonders während des Alterungsprozesses. Das Thema „aging” ist ein Forschungsschwerpunkt der medizinischen Fakultät, der wir für die Unterstützung beim Umzug des Labors im vergangenen Jahr herzlich danken.

Die Faszienforschungsgruppe der Division of Neurophysiology der Universität Ulm beschäftigt sich mit den vielfältigen biomechanischen Eigenschaften sowie zellulären Dynamiken des körperweiten Fasziennetzwerkes. Zusammen mit anderen Forschungsgruppen fördert sie eine internationale Vernetzung diesbezüglicher wissenschaftlicher Initiativen.

Bedanken möchten wir uns auch für die großzügige finanzielle Förderung der Deutschen Forschungsgesellschaft (DFG), die unsenehrlichen CONNECT Kongress in diesem Rahmen ermöglicht.

Jürgen M. Steinacker & Robert Schleip, Ulm

Scientific Committee

- Dr. Andrew Franklin-Miller
- Dr. Heike Jäger
- Dr. Werner Klingler
- Dr. Robert Schleip
- Prof. Dr. Kai Röcker
- Dr. Martina Velders
- Prof. Andry Vleeming

Organisation Committee

- Elfene Feil
- Dr. Heike Jäger
- Dr. Werner Klingler
- Gesine Niedobitek
- Dr. Uwe Schumann
- Dr. Martina Velders

Grußwort zum ersten CONNECT-Kongress

Bindegewebe in der Sportmedizin

Connective Tissues in Sports Medicine
Non-Invasive Clinical Measurement of the Viscoelastic Properties of Tendon using Acoustic Wave Transmission

Wearing S1, Hooper S2, Locke S1, Smalleyers J2
1Faculty of Health Sciences and Medicine, Bond University, Australia
2Centre for Excellence for Applied Sport Science Research, Queensland Academy of Sport, Australia

Introduction: The erector-spinae region between the 2nd and 4th lumbar vertebra of 59 subjects was treated for 3-5 minutes in a rolling way, until the practitioner felt the tissue becoming softer. Measurements were taken before and after the treatment, in order to compare electrical resistance, reactance and phase angle, as well as the histogram of the ultrasound-elasticity. Subjects were asked about their sex, age, body mass index, sport-activity and history of pain. Results: Considering the impedance we show that there is not only a difference of the impedance in sex (female > male) and age (old < young), but that the women and the older subjects also showed greater reactions to the treatment. Persons with a higher body mass index also responded more to the treatment. The ultrasound-elasticity showed a tendency to soften tissue after the treatment, again more with the women than with men. Conclusions and Discussion: Both measurements in combination yield valid information about the tissue changes during and after manual treatment. Sono-elasticity is able to visualize a softening of the lumbar fascia and differentiates the place where this softening happens. The tissue shows different reactions depending on the sex, age, weight, pain and sport-activity of the person. Since there is no data about the normal impedance of different kinds of human tissue, more detailed examinations are necessary to estimate individual variations. Implications: Manual therapists often claim to feel the tissue get softer in a so called “release”. This can be shown and evidenced with impedance- and elastography-measurements and provides a quantitative tool for evaluating one therapeutic effect in tissue manipulation. Both methods also reveal some risk-factors for lumbar restrictions and backpain.

Modulation of Collagenous Connective Tissue under Ultrasound-Induced Heat

Lorenz KK
Physiotherapist, Jettingen-Scheppach, Germany

Introduction: Ultrasound-elasticity imaging has recently attracted attention as a technique which directly reveals the physical property of fascial tissues and makes it possible to quantify changes in, for example, tissue hardness due to disease. As manual myofascial treatments often claim to change the tissue’s properties, this device can also be used to assess changes in thickness as well as stiffness before and after manipulation. Electrical impedance is a parameter which can be used to determine the amount of water within human tissue. Measuring with various frequencies and considering the physical aspects of impedance it is also possible to differentiate between intra- and extracellular water. Purpose/ Aim: In order to characterize tissue properties we apply ultrasound and impedance measurements before and after a short manual treatment of the lumbar region with Rolling® techniques. Materials and Methods The erector-spinae region between the 2nd and 4th lumbar vertebra of 39 subjects was treated for 3.5-5 minutes in a Rolling® way, until the practitioner felt the tissue becoming softer. Measurements were taken before and after the treatment, in order to compare electrical resistance, reactance and phase angle, as well as the histogram of the ultrasound-elasticity. Subjects were asked about their sex, age, body mass index, sport-activity and history of pain. Results: Considering the impedance we show that there is not only a difference of the impedance in sex (female > male) and age (old < young), but the women and the older subjects also showed greater reactions to the treatment. Persons with a higher body mass index also responded more to the treatment. The ultrasound-elasticity showed a tendency to soften tissue after the treatment, again more with the women than with men. Conclusions and Discussion: Both measurements in combination yield valid information about the tissue changes during and after manual treatment. Sono-elasticity is able to visualize a softening of the lumbar fascia and differentiates the place where this softening happens. The tissue shows different reactions depending on the sex, age, weight, pain and sport-activity of the person. Since there is no data about the normal impedance of different kinds of human tissue, more detailed examinations are necessary to estimate individual variations. Implications: Manual therapists often claim to feel the tissue get softer in a so called “release”. This can be shown and evidenced with impedance- and elastography-measurements and provides a quantitative tool for evaluating one therapeutic effect in tissue manipulation. Both methods also reveal some risk-factors for lumbar restrictions and backpain.
Tendon disorders are a significant cause of pain and morbidity amongst athletes, workers and the general public. Tendinopathy is often viewed as the result of failed or inadequate healing response through repetitive overuse. Previous authors have suggested there may be an association between pain and neovascular changes resulting from tendon overuse in tendinopathy patients. In order to evaluate the effects of repetitive overuse on the expression of angiogenic genes which regulate neovascularization in tendinopathy, primary human tendon cells were subjected to cyclic strain. By using a Flexcell® Tension System, isolated tendon cells from human hamstring tendons (excess ACL autograft material) were exposed to cyclic tension (1 Hz frequency and 10% strain). MTS and tube formation assays were conducted with conditioned media in order to evaluate the proliferative and angiogenic activity of factors released with conditioned media. In parallel, we determined the expression of VEGF-BFGF and Cox-2. But, by increasing the course time, VEGF-BFGF and Cox-2 were progressively downregulated. Angiogenic profiling of tendon cells by qPCR array identified a number of other genes (ANGPTL4, FGF-1, TIMP, VEGF, FGF-2, and SPHK1) that appear to respond to tensile loading in a similar pattern. Upregulation of these factors may be responsible for an observed increase in proliferation and angiogenic activity of HUVEC cells. Our preliminary results show that ANGPTL4 expression was upregulated by HIF-1α and blocked by a TGF-β inhibitor. It indicates that the early response of tendon cells to overuse tensile loading leads to an upregulation of angiogenic factors which may play a role in tissue homeostasis following periods of overuse. HIF-1α and TGF-β pathways may be involved in this response and might modulate the expression of ANGPTL4. Future studies will unravel the mechanism and also the function of the ANGPTL4 protein in angiogenesis and matrix remodeling in tendons.

Dexamethasone, as a potent member of the glucocorticoid class, has a range of effects on cell survival, cell signaling and gene expression. Substance P (SP) which is produced by neuronal and non-neuronal cells has various functions. In addition to its role in pain transmission, this neuropeptide has effects on cell growth, angiogenesis, inflammation and tissue remodeling. SP has previously been shown to be correlated to pain levels in tendinopathy, therefore we reasoned that the reduction of symptoms seen in response to corticosteroid injections could be mediated through an effect on SP production or signaling. ANGPTL4 is a secreted protein involved in angiogenesis and metabolism regulation. Our previous study introduced ANGPTL4 as a mechanoresponsive factor that may modulate angiogenesis in tendon. In this study, we evaluate the effects of dexamethasone on SP and its receptor Neurokinin-1 receptor (NK-1 R) and also ANGPTL4. The isolated tendon cells from human hamstring tendons (excess ACL autograft material) were incubated with different doses of dexamethasone. Cells were harvested at different time points for RNA extraction and cDNA synthesis. The expression levels of TAC 1 (the gene encoding Substance P protein), NK-1 R and ANGPTL4 were measured using qPCR. The qPCR data show that dexamethasone significantly down-regulated the TAC1 mRNA in a time and concentration-dependent manner; however there was no significant effect on NK-1 R expression. Our results also show that dexamethasone upregulated ANGPTL4 expression; however the upregulation was most pronounced at low doses and short incubation times. Our results suggest an inhibitory effect of dexamethasone on Substance P synthesis by tendon cells. Recent findings suggest the role of Substance P in tissue remodeling and tenocyte proliferation in tendon tissue. Therefore inhibition of Substance P by dexamethasone may alter the matrix and cellularity of tendons, as well as nociception and pain. Dexamethasone also modulates ANGPTL4 expression. Previous studies have shown the effects of ANGPTL4 on angiogenesis and metabolism regulation. Modulation of ANGPTL4 by dexamethasone may affect angiogenesis and matrix remodeling in tendon tissue. Further studies are needed to clarify the effects of corticosteroid treatments on tendon cells and matrices.
Conductance Ca2+-Activated K+ Channels Inhibit Human Pancreatic Cancer Cell Growth in Vitro. Mol

β, Köhler R, Hoyer J: Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channel.

The impact on the connective tissue research. Therefore a focus on fascia and the knowledge of modulators

ED-A, and fibrotic markers like PAI-1 or CTGF. The TGF-β/SMAD-dependent proliferation can be mo-

α-smooth muscle actin stress fiber bundles, provides the cell with contractile activity. It can be characterized by markers like SMA, type I collagen, fibronectin/ED-A, and fibrotic markers like PAI-1 or CTGF. The TGF-β-SMAD-dependent proliferation can be mo-

Effects of Training Status and Exercise on Skeletal Muscle Gene Expression Profiles

Velders M, Beiter T, Hudemann F, Schild M, Mooren FC, Schumann U, Niess AM, Steinacker JM 1

1 Department of Internal Medicine, Division of Sports- Rehabilitation Medicine, Ulm University, Germany

2 Department of Internal Medicine, Sports Medicine, Tübingen University, Germany

3 Department of Sports Medicine, Institute of Sports Sciences, Giessen University, Germany

Elucidating the molecular processes responsible for skeletal muscle adaptability in response to exercise is important in order to design effective, individualized training programmes. Gene expression analyses are a useful tool to study the complex signal cascades involved in the response of skeletal muscle to acute exercise and during the regeneration process, leading to physiological and morphological adaptations.

Microarray analyses (Affymetrix Human Genome U219 Array) were conducted of skeletal muscle samples (bi. vastus lateralis), collected from 8 endurance trained/ET (VO_2max = 67 ml/kg/min) and 8 untrained/UT (VO_2max = 40 ml/kg/min) male study participants at rest, 30 min and 3 h after an acute bout of endurance exercise on a cycle ergometer (1h, 80% VO2 max). Selected transcripts were validated by real-time PCR. Differentially regulated transcripts (± 1.5-fold expression difference; p < 0.05) were further characterized using functional network analysis (GeneSpring pathways analysis). A total of 214 transcripts were differentially regulated at rest between ET and UT. Expression of genes involved in oxidative metabolism was greater in skeletal muscle from endurance trained athletes compared to the untrained group, reflecting the greater proportion of slow muscle fibers in the trained state. The expression of 772 genes was altered by the acute endurance exercise bout (fold change ± 1.5; p < 0.05). 189 and 268 genes were differentially regulated between ET and UT after 30 min and 3 h, respectively. Results show that the expression of the nuclear receptor hormone receptor (NR) family Nurr77 (NR3A1) and Nor-1 (NR4A1) was significantly induced by the acute cycling bout in both ET and UT. The NR4A family of orphan nuclear receptors regulates the expression of fiber type specific metabolic and structural genes. Nurr77 expression increased 43.5-fold (p < 0.01) and 3.5-fold (p < 0.01) compared to the resting state 30 minutes after exercise in ET and UT, respectively. Nurr77 expression continued to increase in UT at 3 h (6-fold vs. rest UT 3 h, p < 0.05) and in ET at 3 h (6-fold vs. rest ET 3 h, p < 0.05). Nor-1 expression was not significantly altered in ET, while Nor-1 was induced 3.5-fold vs. rest in UT (3.5-fold vs. rest UT 3 h, p < 0.01). Nor-1 responds to β-adrenergic signaling and reduces myostatin (Mstn) expression. Expression of the β-2 adrenergic receptor (ADRB2) was elevated 2.1-fold vs. rest (p < 0.01) in both ET and UT muscle 30 minutes post exercise. Mstn expression was 2.6-fold (p < 0.01) higher at rest in UT vs. ET and exercise decreased only in UT after exercise (3.1-fold vs. rest UT 3 h, p < 0.01).

Do Calcium Activated Potassium Channels Control Proliferation of Myofibroblasts?

Jager H, Klingler W, Lehmann-Horn F, Schlegel R

Fascia Research Group, Division of Neurophysiology, University of Ulm, Germany

Background: The calcium-activated K+ channel, KCa3.1, has an important function in Ca2+ signaling for maintaining a negative membrane potential, which provides an electrochemical gradient to drive Ca2+ influx. In fibroblasts this channel is up-regulated in a TGF-β dependent manner. The same TGFB/SMAD signaling is increased in several fibroproliferative diseases, for example in kidney fibrosis (1), or Dupuytren’s disease (2). This pathway is also found to be involved in chronic inflammatory autoimmune diseases, like T-cell mediated coxibus or multiple sclerosis. Blockage of KCa3.1 in fibroblast can suppress myogenesis (3) and in pancreatic cancer cell lines it can stop proliferation (4). Results: The myofibroblast, a specified fibroblast that expresses α-smooth muscle actin stress fiber bundles, provides the cell with contractile activity. It can be characterized by markers like SMA, type I collagen, fibronectin/ED-A, and fibrotic markers like PAI-1 or CTGF. The TGF-β/SMAD-dependent proliferation can be modulated for example by Conti-Romano, TRAM-34 (4) or SB-431542 (2). Conclusion: This understanding of the molecular biology of fibroproliferative and chronic inflammatory autoimmune disease can have an impact on the connective tissue research. Therefore a focus on fascia and the knowledge of modulators of fibroproliferative pathways can be beneficial in therapy in the future. References: 1. Gricz I, Kiss E, Kassai RP, Buch C, Kloss M, Sauter J, Müller A, Kastha A, Schmidt C, Raman G, Wuß H, Strutz F, Grone H, Köhler R, Hoyer J. Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channel. PNAS 106 (2009) 15618-15622. 2. Krause C, Kloen P, ten Dijke P. Elevated transforming growth factor-β and mitogens-activated protein kinase pathways mediate fibrotic traits of Dupuytren’s disease fibroblasts. Fibrogenesis & Tissue Repair 4 (2011) 145. 3. Pena T, Chen S, Kneierczyn S E, and Rane S G. Ras/MEK/ERK Up-regulation of the Fibroblast KCa Channel FIK in a Common Mechanism for Basic Fibroblast Growth Factor and Transforming Growth Factor-β Suppression of Myogenesis. J Biol Chem 275 (2000) 13677-13684. 4. Jager H, Breker T, Buck A, Grieb K, Gross T, Grimmer S. Blockage of Intermediate-Conductance Ca2+-Activated K+ Channels Inhibits Human Pancreatic Cancer Cell Growth In Vivo. Mol Pharmacol 65 (2004) 630-638.

Do Calcium Activated Potassium Channels Control Proliferation of Myofibroblasts?

Jager H, Klingler W, Lehmann-Horn F, Schlegel R

Fascia Research Group, Division of Neurophysiology, University of Ulm, Germany

References

Referat Nr. 9, Sitzung (2013-04-13):

Do Calcium Activated Potassium Channels Control Proliferation of Myofibroblasts?

Jager H, Klingler W, Lehmann-Horn F, Schlegel R

Fascia Research Group, Division of Neurophysiology, University of Ulm, Germany

Referat Nr. 10, (2013-04-13):

Cell-free DNA in Response to Exercise: Do Neutrophils Produce Extracellular Traps?

Beiter T, Velders M, Fragasso A, Steinacker JM, Nieß A

1Department of Sports Medicine, University Hospital Tübingen, Germany

2Division of Sports Medicine, University Hospital Ulm, Germany

3Department of Sports Medicine, Institute of Sports Sciences, Giessen University, Germany

Exercise is a proven therapy for the primary and secondary prevention of lifestyle related diseases, includ-
ing inflammatory and degenerative diseases. On the other hand, immunological reactions in response to acute, intense exercise can trigger thrombotic and cardiovascular complications, which can lead to sudden cardiac death. Exercise training in competitive sports increases the susceptibility to infections and allergies, and can result in chronic fatigue symptoms. The underlying immunological triggers and mechanisms, as well as the complex regulatory balance between pro- and anti-inflammatory mediators are currently largely unknown. High intensity exercise causes a direct, transient rise in circulating cell-
free DNA (cfdNA), a phenomenon also observed in tumor patients and patients suffering from inflammatory diseases. The underlying mechanisms are currently unknown and subject to intense and controversal debate. A tentative explanation is offered by the recently discovered mechanism of active DNA release by neutrophils (neutrophil extracellular traps, NETs). NETs are a matrix, composed of granule proteins and chromatin and serve as a first line defense strategy against invading pathogens. Recent studies have shown that NETs are also present in non-infectious diseases, where they are suspected to cause thrombotic complications, excessive immune reactions and cell damage. Current results from our research groups suggest that high intensity exercise triggers the release of NETs. Furthermore, we show that the active release of NETs in response to exercise in healthy people is effectively counteracted by a concomitant increase in serum DNAase activity. The NET model of DNA release offers a mechanistic explanation for the complex immunological processes triggered by exercise. Measuring the balance between cfdNA concentration and serum DNAase activity as part of a standardized exercise test has the potential to serve as a risk marker for patients with immunological and hemostatic malfunctions.
Injuries to the back represent one sixth of sporting injuries across a variety of sports. This does not include injuries involving the pelvis girdle and its muscle and ligamentous attachments. It has been suggested that 30% of non-specific low back pain may have its origin in the sacro-iliac joint. In the context of sporting activity we have identified a clinical pattern representing mechanical pathology of the sacro-iliac joint, now termed sacro-iliac joint incompetence (SIJI), and matching images with SPECT/CT, a modality seldom applied to low back and buttck pain following acute or overuse trauma to the region (Cusani et al. 2011). Interdisciplinary World Congress on Low Back & Pelvic Pain, 2010). Methods: All patients with a clinical diagnosis of SIJI following the European guidelines for Pelvic Girdle Pain were studied by SPECT/CT. Patients were followed up by interview at 6 months after therapy (directed physiotherapy or prolotherapy). For SPECT/CT, patients were injected intravenously with 900 - 1000 MBq of 99mTc-HMP and planar images obtained followed by SPECT/CT from the level of the lesser trochanters up to the acetabulum. Images were reported by 2 experienced nuclear medicine physicians. Results: The average age of the 253 patients was 42 years (15-71 yr) with 65% F, 35% M. Average length of history was 3.5 years (6 weeks to 26 years). Trauma was implicated in 8% of cases and post-partum back pain in 9%. Clinical scores for SIJI were an average of 5.4 by the European guidelines. All patients showed SIJ uptake and loss of the normal configuration of joint uptake with ligament uptake. Joint scintiscans was observed in 83%. Hamstring enthethesopathy was present on the ischial tuberosity in 39% and on the opposite side in 61%. Adductor enthethesopathy was present on the ischial tuberosity in 66% and on the opposite side in 57% with bilateral involvement in 23%. Ipsilateral hip impingement was present in 72%. Extra finding were evident in 56%. Conclusion: We have confirmed the integrity of SPECT/CT in a large cohort of patients with SIJI with specific treatment of the condition yielding good clinical results, in spite of the average length of the clinical history being 3.5 years. The SPECT/CT findings (metabolic changes at the relevant bone-ligamentous interface) and the clinical progress of patients confirm the validity of the self-bracing mechanism proposed by Vleeming and Lee (1998).

Myoreflextherapy is practiced since 1991. Her basics are embryology, functional anatomy, neuroan- pathic, a myofascial model, biochemistry, psychoneurology, sportmedicine and traditional Chinese medicine. By increasing the manual pressure at the muscle-tendon-bone-transition, neuromuscular reactions and reactions in the connecting tissue are triggered. Myoreflextherapy means an immediate spontaneous regulation of tension in the muscle or rather in the muscle system and with that, it means decompression of joints and soft tissue structures. By physics can be shown, that the axes and vectors of the locomotor system effective powers flow into the same points/spots concurrent with the traditional acupuncture points/meridians. So a discipline, obliged neither to the western orthodox medicine, nor to the medical traditions of the east, confirms the acupuncture points – based on the functional kinetic geometry of the musculoskeletal system. Its success is rather based on the fact that its periphery at the same time is access for central and higher instances of motoricity and also of information processing in general. In a vertical network complex movements involve whole chains of muscle elements. This regulation system can be built into muscle loops and muscle chains. It is used in the German Bundesliga of football and ice hockey by some physiotherapists and players. Since a personal treatment Klimann is convinced by the effectivness of this therapy. Dr. Mosetter is now the medical consultant of the american football team. Myoreflextherapy helps to prevent injuries and leads to an easier come back after trauma. There are not only myofascial techniques, there are also metaphysical advice to the power and Leistungsfähigkeit. The knowledge has an effect on the performance of the training. I use this therapy on all patients and the judoka of a regional Bundesliga team. Studies of the benefit are still running.

Myofascial Triggerpoint Release (MTR) Technique in Reducing Chronic Shoulder Pain

Gordon C1,2, Schleip R1, Jäger H1, Klingler W1, Birbaumer N3, Rea M1

1 Fascia Research Group, Division of Neurophysiology, Ulm University, Germany
2 Center für Integrative Therapie, Stuttgart, Germany
3 Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen

Introduction. Shoulder pain is a common health problem with high prevalence. Previous studies have suggested that myofascial trigger points are strongly associated with musculoskeletal chronic shoulder pain. To deactivate the MTPs, different treatments have been proposed as manual techniques, active exercises and postural corrections. In addition, myofascial trigger-point release (MTR) therapy is often prescribed for treating lower back pain. However, there is a lack of systematic and controlled studies to objectively measure the efficacy of these techniques and especially in terms of muscle stiffness and elasticity. Research question(s)/hypothesis: The general aim of the present study was to assess in a pilot investigation the principle effectiveness of the Myofascial Triggerpoint Release technique in patients with chronic shoulder pain. We hypothesized that MTR technique would decrease pain perception and improve shoulder function by reducing muscle stiffness and increasing muscle elasticity. Methods: On 23 patients, three sites were selected on the more painful trapezius (treated side) and on the opposite trapezius (not-treated side) respectively. A standardized maneuver of myofascial triggerpoint release technique, in four 10 minute sessions over a period of 2 weeks was exclusively applied on the more painful trapezius. Myometry, algometric, analog scales of stress, quality of life, level of suffering and range of movement were assessed before and after intervention. Additionally, a brief pain inventory (BPI) scale was presented pre-, post- and four-weeks post- treatment. Results: A significant decrease in stiffness (p<0.01) and increase in elasticity (p<0.001) was observed post intervention only for the treated side. An increase in pressure and depth (algometric) indicating a significant reduction of pain was observed on the treated and not-treated sides respectively. Scores of BPI scale significantly decreased from 6.5±1.51 before intervention to 2.26±1.84 after intervention and to 1.64±1.84 at 4 weeks after the intervention. A significant decrease of level of suffering and stress scores and significant increase of quality of life and range of movement scores were observed after treatment. Discussion: Our results demonstrated that MTR technique may induce clinically relevant improvements in pain reduction and objective changes in mechanical tissue properties in patients with shoulder chronic pain. Moreover, decrease in stiffness and increase in elasticity only for the treated side indicates a specificity of our intervention in improving shoulder mobility and inducing reorganization of healthy muscle functioning.
Isometric Endurance Enhancement after Repeated Profound Continuous Pressure Treatments

Outregrain J, Dupuis E, Khorassani Zadeh D, Vicaud E

1 Faculté de Médecine de Paris XI, hôpital Kremlín-Bicêtre, France
2 Pratiquez Hospitalier, Assistance Publique-Hôpitaux de Paris AP HP Bicêtre, France
3 Service de Rhumatologie, hôpital Victor Dupouy, France
4 AP HP, Unité de Recherche Clinique Lattessoïère - Saint Louis, Hôpital Fernand Vidal, Paris, France

Introduction: Massage can be considered relevant for low back pain but is very demanding for the therapist. A device (MyoDK®) was built to precisely apply monitored pressure using bodyweight and allow prolonged and systematic treatments under standardized protocols. Before testing its efficiency for patients, we aimed to prove its ability to enhance muscular performance in normal subjects on tests considered significant for evaluating low back pain patients. Hypothesis: A repeated treatment of mechanically applied pressure on soft tissues can increase isometric endurance. Methods: 20 national level French hockey players were randomly assigned into a treated (n = 10) and a control group (n = 10) for a 3 month trial. Blinded investigators evaluated performance initially (M0) and at the end of each month (M1, M2, M3) for isometric endurance and push-ups. Isometric endurance was calculated as the average performance on 4 tests: trunk flexors, trunk extensors, hip extensors and chair. The treatment group received 3 treatments every month for 3 months of control monitored pressure on trunk and leg muscles for 20 minutes. Statistical analysis used ANOVA with 1 factor (level of significance was set at 0.05 for all tests.) Results: Isometric endurance is significantly increased in the treatment group after 2 months (84.8 ± 2.5 s versus 125 ± 18.2, p < 0.05) and after 3 months (96.8 ± 21.8 versus 136.9 ± 19.8, p < 0.005) Push-up performance was not significantly modified. Discussion: Repeated treatment of mechanically applied pressure on trunk and legs soft tissues has been able to enhance isometric endurance of conditioned athletes, not acutely but after 2 months. Interestingly arms were not treated and the performance did not differ between the 2 groups after treatment. Blinded subjects to the treatments was found to be impossible but athletes are competitors by nature and its unlikely their performance was influenced by psychological factors. Whether improvements rely on soft tissue modifications or neural improvement remains to be determined by further studies.

Elasticity Measurements on Agarose-Phantoms – Shear Wave Ultrasound Elastography and Myometry

1 Division of Neurophysiology, University Ulm, Germany
2 Department of Internal Medicine I, University Hospital of Ulm, Germany

Introduction: Elastography measurements to monitor tissue changes have become important in a wide medical application field, for example in breast cancer. A new ultrasound based technology the Acoustic Radiation Force Impulse Virtual Touch Imaging and Quantification (ARFI VTIQ) and a myometry measurement device, the MyotonPro, were tested on agarose phantoms. These two new methods for assessing quantitative tissue characteristics like stiffness and elasticity were used in parallel on agarose phantoms. The ARFI VTIQ technology provides a qualitative and quantitative assessment of tissue stiffness using acoustically induced shock pulses. The resulting tissue displacement is analyzed as a color-coded elastography profile of the different depth of the tissue. The MyotonPro measurement is an integrated determination of tissue characteristics at a position. The MyotonPro device induces an external mechanical impulse. The resulting damped natural oscillation is recorded by an accelerometer in form of an acceleration graph. Target: Test measurements on homogeneous and mixed elastography phantoms by ARFI VTIQ and Myometry Methods. Phantoms were build out of 0.7 to 3% agarose slices in different combinations including harder inclusions of different shapes. These inclusions had a 10-mm diameter and were made with 1%-4% agarose. A colored ink was added in the inclusion phantoms to make it visible. For optimizing the B-mode a layer of muscle tissue from pig was inserted in some phantoms. With the ARFI VTIQ technique (Siemens Acuson S3000) and Myometry (MyotonPro) the biomechanical properties of the different phantoms were determined. The ARFI VTIQ measurement is carried out in m/s, and compared with the MyotonPro biomechanical and viscoelastic properties. Result: Experiments were conducted in elastic agarose phantoms. These phantoms can be considered as elastic solids for the low frequency, shear waves generated. The percentage in agarose chosen was tested in advance to be in the error free measuring range of the MyotonPro device. The experiments presented were realized in agarose phantom in which the shear wave speed was in the range of 15m/s to 8m/s. It was of special interest how this new ARFI1 technology measures tissue elasticity at transition phases. And for the Myometry we addressed the question which impact an inclusion at a certain depth has for the measurement. Interestingly the stiffness of an adjacent layer projects an artefact of about 2mm into the next layer for the ARFI measurement.

Possible Applications of Stretching of the Myofascial Units in Warm Water

Zagorski T

Training Institute Handson, Poland

Introduction: At the present time more and more attention is paid to the fascia issues, both in the research and practical applications. Thomas Myers concept of myofascial units continuity, which creates the lines of force transmission in the body applies well for stretching strategies. Most recent data shows fascia elasticity and adaptability with applications to training. However, in living body the fascia is connected with muscles, and while being stretched both tissues should be taken into account. Data shows, that relaxed muscles are more able to stretch, thus we need to look for a good environment for relaxation. Body temperature water (31-35 degrees Celsius) seems to be optimal environment for stretching of myofascial units. Research hypothesis: Stretching of myofascial units in body temperature water is effective and gives additional opportunity for sports professionals. Methods: Author used a literature review, including notes from number of workshops as well as practical experience in working with top level athletes to create a proposal of stretching protocols and its applications. Results: Presented techniques apply to all major lines of myofascial units thought the body and has applications in all natural movements. Discussion: Practical effects of stretching in the water of body temperature shows promising results, which may be connected with recently found nature of the fascia and physiology of immersed body. This gives an additional way of application of stretching for athletes as well as a wide field of new research in this area.